Add script for generating swing trading signals based on Time, Price, Scale-in (TPS) strategy

This commit is contained in:
moshferatu 2024-11-16 06:26:28 -08:00
parent 77097da546
commit fb0eb7a84b

40
strategies/tps.py Normal file
View File

@ -0,0 +1,40 @@
import numpy as np
from pandas import DataFrame, Series
def calculate_moving_average(data: DataFrame, window: int = 200) -> Series:
"""
Calculate the 200-period moving average and return it as a Series without modifying the original DataFrame.
"""
return data['Close'].rolling(window = window).mean()
def calculate_rsi(data: DataFrame, period: int = 2) -> Series:
"""
Calculate the 2-period RSI and return it as a Series without modifying the original DataFrame.
"""
delta = data['Close'].diff()
gain = np.where(delta > 0, delta, 0)
loss = np.where(delta < 0, -delta, 0)
alpha = 1 / period
avg_gain = Series(gain).ewm(alpha = alpha, adjust = False).mean()
avg_loss = Series(loss).ewm(alpha = alpha, adjust = False).mean()
rs = avg_gain / avg_loss
return 100 - (100 / (1 + rs))
def signals(data: DataFrame) -> Series:
"""
Calculate signals based on the Time, Price, Scale-in (TPS) strategy.
Returns a Series with 'Long' for signals and 'None' otherwise, without modifying the original DataFrame.
"""
ma_200 = calculate_moving_average(data)
rsi_2 = calculate_rsi(data)
above_ma_200 = data['Close'] > ma_200
rsi_below_25 = (rsi_2 < 25)
rsi_below_25_for_two_days = rsi_below_25 & rsi_below_25.shift(1, fill_value = False)
conditions = above_ma_200 & rsi_below_25_for_two_days
return Series(np.where(conditions, 'L', 'N'), index = data.index)