diff --git a/strategies/tps.py b/strategies/tps.py new file mode 100644 index 0000000..1123f96 --- /dev/null +++ b/strategies/tps.py @@ -0,0 +1,40 @@ +import numpy as np + +from pandas import DataFrame, Series + +def calculate_moving_average(data: DataFrame, window: int = 200) -> Series: + """ + Calculate the 200-period moving average and return it as a Series without modifying the original DataFrame. + """ + return data['Close'].rolling(window = window).mean() + +def calculate_rsi(data: DataFrame, period: int = 2) -> Series: + """ + Calculate the 2-period RSI and return it as a Series without modifying the original DataFrame. + """ + delta = data['Close'].diff() + gain = np.where(delta > 0, delta, 0) + loss = np.where(delta < 0, -delta, 0) + + alpha = 1 / period + avg_gain = Series(gain).ewm(alpha = alpha, adjust = False).mean() + avg_loss = Series(loss).ewm(alpha = alpha, adjust = False).mean() + + rs = avg_gain / avg_loss + return 100 - (100 / (1 + rs)) + +def signals(data: DataFrame) -> Series: + """ + Calculate signals based on the Time, Price, Scale-in (TPS) strategy. + Returns a Series with 'Long' for signals and 'None' otherwise, without modifying the original DataFrame. + """ + ma_200 = calculate_moving_average(data) + rsi_2 = calculate_rsi(data) + + above_ma_200 = data['Close'] > ma_200 + + rsi_below_25 = (rsi_2 < 25) + rsi_below_25_for_two_days = rsi_below_25 & rsi_below_25.shift(1, fill_value = False) + + conditions = above_ma_200 & rsi_below_25_for_two_days + return Series(np.where(conditions, 'L', 'N'), index = data.index) \ No newline at end of file