Add script for generating Cumulative RSI swing trading signals
This commit is contained in:
parent
caef1c17ab
commit
7ece726a02
45
strategies/cumulative_rsi.py
Normal file
45
strategies/cumulative_rsi.py
Normal file
@ -0,0 +1,45 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from pandas import DataFrame, Series
|
||||
|
||||
def calculate_moving_average(data: DataFrame, window: int = 200) -> Series:
|
||||
"""
|
||||
Calculate the 200-day moving average and return it as a Series without modifying the original DataFrame.
|
||||
"""
|
||||
return data['Close'].rolling(window = window).mean()
|
||||
|
||||
def calculate_rsi(data: DataFrame, period: int = 2) -> Series:
|
||||
"""
|
||||
Calculate the 2-period RSI and return it as a Series without modifying the original DataFrame.
|
||||
"""
|
||||
delta = data['Close'].diff()
|
||||
gain = np.where(delta > 0, delta, 0)
|
||||
loss = np.where(delta < 0, -delta, 0)
|
||||
|
||||
alpha = 1 / period
|
||||
avg_gain = pd.Series(gain).ewm(alpha = alpha, adjust = False).mean()
|
||||
avg_loss = pd.Series(loss).ewm(alpha = alpha, adjust = False).mean()
|
||||
|
||||
rs = avg_gain / avg_loss
|
||||
return 100 - (100 / (1 + rs))
|
||||
|
||||
def calculate_cumulative_rsi(rsi: Series, window: int = 2) -> Series:
|
||||
"""
|
||||
Calculate the cumulative RSI over a specified window period and return it as a Series.
|
||||
"""
|
||||
return rsi.rolling(window = window).sum()
|
||||
|
||||
def signals(data: DataFrame, rsi_period: int = 2, cumulative_period: int = 2) -> Series:
|
||||
"""
|
||||
Generate 'L'ong entry signals based on the Cumulative RSI strategy.
|
||||
Returns a Series with 'L' for entry signals and 'N' otherwise without modifying the original DataFrame.
|
||||
|
||||
Entry Condition: 2-period cumulative RSI below 35 and above the 200-day moving average.
|
||||
"""
|
||||
ma_200 = calculate_moving_average(data)
|
||||
rsi_2 = calculate_rsi(data, period = rsi_period)
|
||||
cumulative_rsi_2 = calculate_cumulative_rsi(rsi_2, window = cumulative_period)
|
||||
|
||||
long_condition = (data['Close'] > ma_200) & (cumulative_rsi_2 < 35)
|
||||
return Series(np.where(long_condition, 'L', 'N'), index = data.index)
|
Loading…
Reference in New Issue
Block a user