diff --git a/strategies/cumulative_rsi.py b/strategies/cumulative_rsi.py new file mode 100644 index 0000000..314ad12 --- /dev/null +++ b/strategies/cumulative_rsi.py @@ -0,0 +1,45 @@ +import pandas as pd +import numpy as np + +from pandas import DataFrame, Series + +def calculate_moving_average(data: DataFrame, window: int = 200) -> Series: + """ + Calculate the 200-day moving average and return it as a Series without modifying the original DataFrame. + """ + return data['Close'].rolling(window = window).mean() + +def calculate_rsi(data: DataFrame, period: int = 2) -> Series: + """ + Calculate the 2-period RSI and return it as a Series without modifying the original DataFrame. + """ + delta = data['Close'].diff() + gain = np.where(delta > 0, delta, 0) + loss = np.where(delta < 0, -delta, 0) + + alpha = 1 / period + avg_gain = pd.Series(gain).ewm(alpha = alpha, adjust = False).mean() + avg_loss = pd.Series(loss).ewm(alpha = alpha, adjust = False).mean() + + rs = avg_gain / avg_loss + return 100 - (100 / (1 + rs)) + +def calculate_cumulative_rsi(rsi: Series, window: int = 2) -> Series: + """ + Calculate the cumulative RSI over a specified window period and return it as a Series. + """ + return rsi.rolling(window = window).sum() + +def signals(data: DataFrame, rsi_period: int = 2, cumulative_period: int = 2) -> Series: + """ + Generate 'L'ong entry signals based on the Cumulative RSI strategy. + Returns a Series with 'L' for entry signals and 'N' otherwise without modifying the original DataFrame. + + Entry Condition: 2-period cumulative RSI below 35 and above the 200-day moving average. + """ + ma_200 = calculate_moving_average(data) + rsi_2 = calculate_rsi(data, period = rsi_period) + cumulative_rsi_2 = calculate_cumulative_rsi(rsi_2, window = cumulative_period) + + long_condition = (data['Close'] > ma_200) & (cumulative_rsi_2 < 35) + return Series(np.where(long_condition, 'L', 'N'), index = data.index) \ No newline at end of file