import numpy as np import pandas as pd def calculate_rsi(data: pd.DataFrame, period: int = 21) -> pd.Series: """ Calculate the RSI for a given period and return it as a Series. """ delta = data['Close'].diff() gain = np.where(delta > 0, delta, 0) loss = np.where(delta < 0, -delta, 0) alpha = 1 / period avg_gain = pd.Series(gain).ewm(alpha = alpha, adjust = False).mean() avg_loss = pd.Series(loss).ewm(alpha = alpha, adjust = False).mean() rs = avg_gain / avg_loss return 100 - (100 / (1 + rs)) def calculate_ibs(data: pd.DataFrame) -> pd.Series: """ Calculate the IBS and return it as a Series. """ return (data['Close'] - data['Low']) / (data['High'] - data['Low']) def signals(data: pd.DataFrame) -> pd.Series: """ Generate swing trading signals based on the IBS + RSI strategy. Returns a Series with 'L' for long signals and 'N' otherwise. """ ibs = calculate_ibs(data) rsi_21 = calculate_rsi(data, period = 21) conditions = (ibs < 0.25) & (rsi_21 < 45) return pd.Series(np.where(conditions, 'L', 'N'), index = data.index)