import pandas as pd import numpy as np from pandas import DataFrame, Series def calculate_moving_average(data: DataFrame, window: int = 200) -> Series: """ Calculate the 200-day moving average and return it as a Series without modifying the original DataFrame. """ return data['Close'].rolling(window = window).mean() def calculate_rsi(data: DataFrame, period: int = 2) -> Series: """ Calculate the 2-period RSI and return it as a Series without modifying the original DataFrame. """ delta = data['Close'].diff() gain = np.where(delta > 0, delta, 0) loss = np.where(delta < 0, -delta, 0) alpha = 1 / period avg_gain = pd.Series(gain).ewm(alpha = alpha, adjust = False).mean() avg_loss = pd.Series(loss).ewm(alpha = alpha, adjust = False).mean() rs = avg_gain / avg_loss return 100 - (100 / (1 + rs)) def calculate_cumulative_rsi(rsi: Series, window: int = 2) -> Series: """ Calculate the cumulative RSI over a specified window period and return it as a Series. """ return rsi.rolling(window = window).sum() def signals(data: DataFrame, rsi_period: int = 2, cumulative_period: int = 2) -> Series: """ Generate 'L'ong entry signals based on the Cumulative RSI strategy. Returns a Series with 'L' for entry signals and 'N' otherwise without modifying the original DataFrame. Entry Condition: 2-period cumulative RSI below 35 and above the 200-day moving average. """ ma_200 = calculate_moving_average(data) rsi_2 = calculate_rsi(data, period = rsi_period) cumulative_rsi_2 = calculate_cumulative_rsi(rsi_2, window = cumulative_period) long_condition = (data['Close'] > ma_200) & (cumulative_rsi_2 < 35) return Series(np.where(long_condition, 'L', 'N'), index = data.index)