import numpy as np from pandas import DataFrame, Series from daily_data import get_daily_data def calculate_rsi(data: DataFrame, period: int = 2) -> Series: """ Calculate the RSI and return it as a Series without modifying the original DataFrame. """ delta = data['Close'].diff() gain = np.where(delta > 0, delta, 0) loss = np.where(delta < 0, -delta, 0) alpha = 1 / period avg_gain = Series(gain).ewm(alpha = alpha, adjust = False).mean() avg_loss = Series(loss).ewm(alpha = alpha, adjust = False).mean() rs = avg_gain / avg_loss return 100 - (100 / (1 + rs)) def signals(data: DataFrame) -> Series: """ Generate long signals based on the TRIN strategy with the following rules: 1. SPY is above its 200-day moving average 2. 2-period RSI is below 50 3. TRIN closes above 1 Returns a Series with 'L' for long signals and 'N' for no signal. """ ma_200 = data['Close'].rolling(window = 200).mean() rsi_2 = calculate_rsi(data, period = 2) start_date = data['Date'].min() end_date = data['Date'].max() trin_data = get_daily_data(symbol = 'RINT.Z', start_date = start_date, end_date = end_date) trin_above_1 = trin_data['Close'] > 1 above_200_ma = data['Close'] > ma_200 rsi_below_50 = rsi_2 < 50 signals = Series('N', index = data.index) signals[above_200_ma & rsi_below_50 & trin_above_1] = 'L' return signals