38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
|
import numpy as np
|
||
|
|
||
|
from pandas import DataFrame, Series
|
||
|
|
||
|
from daily_data import get_daily_data
|
||
|
|
||
|
def calculate_rsi(data: DataFrame, period: int = 5) -> Series:
|
||
|
"""
|
||
|
Calculate the RSI and return it as a Series without modifying the original DataFrame.
|
||
|
"""
|
||
|
delta = data['Close'].diff()
|
||
|
gain = np.where(delta > 0, delta, 0)
|
||
|
loss = np.where(delta < 0, -delta, 0)
|
||
|
|
||
|
alpha = 1 / period
|
||
|
avg_gain = Series(gain).ewm(alpha = alpha, adjust = False).mean()
|
||
|
avg_loss = Series(loss).ewm(alpha = alpha, adjust = False).mean()
|
||
|
|
||
|
rs = avg_gain / avg_loss
|
||
|
return 100 - (100 / (1 + rs))
|
||
|
|
||
|
def signals(data: DataFrame) -> Series:
|
||
|
"""
|
||
|
Generate swing trading signals based on the Connors VIX Reversal 2 strategy.
|
||
|
Returns a Series with 'L' for long signals and 'N' for no signal.
|
||
|
"""
|
||
|
start_date = data['Date'].min()
|
||
|
end_date = data['Date'].max()
|
||
|
vix_data = get_daily_data(symbol = 'VIX.XO', start_date = start_date, end_date = end_date)
|
||
|
|
||
|
vix_rsi_5 = calculate_rsi(vix_data, period = 5)
|
||
|
|
||
|
vix_rsi_above_70 = vix_rsi_5.shift(1) > 70
|
||
|
vix_close_below_prev_close = vix_data['Close'] < vix_data['Close'].shift(1)
|
||
|
|
||
|
signals = Series('N', index = data.index)
|
||
|
signals[vix_rsi_above_70 & vix_close_below_prev_close] = 'L'
|
||
|
return signals
|