32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
import numpy as np
|
|
|
|
from pandas import DataFrame, Series
|
|
|
|
def calculate_rsi(data: DataFrame, period: int = 5) -> Series:
|
|
"""
|
|
Calculate the RSI and return it as a Series without modifying the original DataFrame.
|
|
"""
|
|
delta = data['Close'].diff()
|
|
gain = np.where(delta > 0, delta, 0)
|
|
loss = np.where(delta < 0, -delta, 0)
|
|
|
|
alpha = 1 / period
|
|
avg_gain = Series(gain).ewm(alpha = alpha, adjust = False).mean()
|
|
avg_loss = Series(loss).ewm(alpha = alpha, adjust = False).mean()
|
|
|
|
rs = avg_gain / avg_loss
|
|
return 100 - (100 / (1 + rs))
|
|
|
|
def vix_reversal_2(data: DataFrame, vix_data: DataFrame) -> Series:
|
|
"""
|
|
Generate swing trading signals based on the Connors VIX Reversal 2 strategy.
|
|
Returns a Series with 'L' for long signals and 'N' for no signal.
|
|
"""
|
|
vix_rsi_5 = calculate_rsi(vix_data, period = 5)
|
|
|
|
vix_rsi_above_70 = vix_rsi_5.shift(1) > 70
|
|
vix_close_below_prev_close = vix_data['Close'] < vix_data['Close'].shift(1)
|
|
|
|
signals = Series('N', index = data.index)
|
|
signals[vix_rsi_above_70 & vix_close_below_prev_close] = 'L'
|
|
return signals |