diff --git a/strategies/tps.py b/strategies/tps.py index bbd529f..2435647 100644 --- a/strategies/tps.py +++ b/strategies/tps.py @@ -1,35 +1,15 @@ -import numpy as np - +from numpy import where from pandas import DataFrame, Series -def calculate_moving_average(data: DataFrame, window: int = 200) -> Series: - """ - Calculate the 200-period moving average and return it as a Series without modifying the original DataFrame. - """ - return data['Close'].rolling(window = window).mean() - -def calculate_rsi(data: DataFrame, period: int = 2) -> Series: - """ - Calculate the 2-period RSI and return it as a Series without modifying the original DataFrame. - """ - delta = data['Close'].diff() - gain = np.where(delta > 0, delta, 0) - loss = np.where(delta < 0, -delta, 0) - - alpha = 1 / period - avg_gain = Series(gain).ewm(alpha = alpha, adjust = False).mean() - avg_loss = Series(loss).ewm(alpha = alpha, adjust = False).mean() - - rs = avg_gain / avg_loss - return 100 - (100 / (1 + rs)) +from indicators import rsi, sma def tps(data: DataFrame) -> Series: """ Calculate signals based on the Time, Price, Scale-in (TPS) strategy. Returns a Series with 'Long' for signals and 'None' otherwise, without modifying the original DataFrame. """ - ma_200 = calculate_moving_average(data) - rsi_2 = calculate_rsi(data) + ma_200 = sma(data, period = 200) + rsi_2 = rsi(data, period = 2) above_ma_200 = data['Close'] > ma_200 @@ -37,4 +17,4 @@ def tps(data: DataFrame) -> Series: rsi_below_25_for_two_days = rsi_below_25 & rsi_below_25.shift(1, fill_value = False) conditions = above_ma_200 & rsi_below_25_for_two_days - return Series(np.where(conditions, 'L', 'N'), index = data.index) \ No newline at end of file + return Series(where(conditions, 'L', 'N'), index = data.index) \ No newline at end of file