121 lines
3.5 KiB
Python
121 lines
3.5 KiB
Python
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
# FFN
|
|
def FeedForward(dim, mult=4):
|
|
inner_dim = int(dim * mult)
|
|
return nn.Sequential(
|
|
nn.LayerNorm(dim),
|
|
nn.Linear(dim, inner_dim, bias=False),
|
|
nn.GELU(),
|
|
nn.Linear(inner_dim, dim, bias=False),
|
|
)
|
|
|
|
|
|
def reshape_tensor(x, heads):
|
|
bs, length, width = x.shape
|
|
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
|
x = x.view(bs, length, heads, -1)
|
|
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
|
x = x.transpose(1, 2)
|
|
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
|
x = x.reshape(bs, heads, length, -1)
|
|
return x
|
|
|
|
|
|
class PerceiverAttention(nn.Module):
|
|
def __init__(self, *, dim, dim_head=64, heads=8):
|
|
super().__init__()
|
|
self.scale = dim_head**-0.5
|
|
self.dim_head = dim_head
|
|
self.heads = heads
|
|
inner_dim = dim_head * heads
|
|
|
|
self.norm1 = nn.LayerNorm(dim)
|
|
self.norm2 = nn.LayerNorm(dim)
|
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
|
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
|
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
|
|
|
|
|
def forward(self, x, latents):
|
|
"""
|
|
Args:
|
|
x (torch.Tensor): image features
|
|
shape (b, n1, D)
|
|
latent (torch.Tensor): latent features
|
|
shape (b, n2, D)
|
|
"""
|
|
x = self.norm1(x)
|
|
latents = self.norm2(latents)
|
|
|
|
b, l, _ = latents.shape
|
|
|
|
q = self.to_q(latents)
|
|
kv_input = torch.cat((x, latents), dim=-2)
|
|
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
|
|
|
q = reshape_tensor(q, self.heads)
|
|
k = reshape_tensor(k, self.heads)
|
|
v = reshape_tensor(v, self.heads)
|
|
|
|
# attention
|
|
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
|
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
|
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
|
out = weight @ v
|
|
|
|
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
|
|
|
return self.to_out(out)
|
|
|
|
|
|
class Resampler(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim=1024,
|
|
depth=8,
|
|
dim_head=64,
|
|
heads=16,
|
|
num_queries=8,
|
|
embedding_dim=768,
|
|
output_dim=1024,
|
|
ff_mult=4,
|
|
):
|
|
super().__init__()
|
|
|
|
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
|
|
|
self.proj_in = nn.Linear(embedding_dim, dim)
|
|
|
|
self.proj_out = nn.Linear(dim, output_dim)
|
|
self.norm_out = nn.LayerNorm(output_dim)
|
|
|
|
self.layers = nn.ModuleList([])
|
|
for _ in range(depth):
|
|
self.layers.append(
|
|
nn.ModuleList(
|
|
[
|
|
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
|
FeedForward(dim=dim, mult=ff_mult),
|
|
]
|
|
)
|
|
)
|
|
|
|
def forward(self, x):
|
|
|
|
latents = self.latents.repeat(x.size(0), 1, 1)
|
|
|
|
x = self.proj_in(x)
|
|
|
|
for attn, ff in self.layers:
|
|
latents = attn(x, latents) + latents
|
|
latents = ff(latents) + latents
|
|
|
|
latents = self.proj_out(latents)
|
|
return self.norm_out(latents) |